GNSS LOW NOISE AMPLIFIER #### **Description:** The CKRF3003MM66 is a pHEMT GaAs Low noise amplifier for GNSS (Global Navigation Satellite Systems). The device has stand-by function to save the supply current and on chip ESD protection circuit. ## **Applications:** GNSS Applications (GPS, Galileo, GLONASS and BeiDou etc.) #### Package: 6-pin lead-less mini mold package (1.5mm x 1.1mm x 0.55mm) #### Features: - Operating frequencies: 1550 1615 MHz - High Gain: 17.0 dB TYP. @Vdd=1.8/ 2.85V, Vctl=1.8/ 2.85V, f=1575MHz - Low noise figure : 0.60 dB TYP. - @Vdd=1.8/ 2.85V, Vctl=1.8/ 2.85V, f=1575MHz - High IIP3: +4 dBm TYP. @Vdd=1.8/ 2.85V, Vctl=1.8/ 2.85V, f=1575+1576MHz ### Pin Configuration And Internal Block Diagram: | Pin No. | Pin Name | |---------|----------| | 1 | Vdd | | 2 | GND | | 3 | RFout | | 4 | GND | | 5 | RFin | | 6 | Vctl | # **Ordering Information:** | Part Number | Order Number | Package | Marking | Supplying Form | |-----------------|-----------------|----------------------|---------|-------------------------------------| | CKRF3003MM66-C2 | CKRF3003MM66-C2 | 6-pin lead-less mini | 113 | •Embossed tape 8 mm wide | | | | mold package | | •Pin 1, 6 face the perforation side | | | | | | of the tape | | | | | | ·Qty 9 Kpcs/reel | CDS-0061-02 Date Published November 2018 ## **GNSS LOW NOISE AMPLIFIER** # **Absolute Maximum Ratings:** | Parameter | Symbol | Rating | Unit | |-------------------------------|-----------------|-----------------------|------| | Supply Voltage | Vdd | 5.0 ^{Note 1} | V | | Control Voltage | Vctl | 5.0 ^{Note 1} | V | | Input Power | P _{in} | +10 | dBm | | Operating Ambient Temperature | T _A | -40~+85 | ပ | | Storage Temperature | T_{stg} | -55~+150 | ° | Note 1. Vctl ≤ Vdd # **Electrical Characteristics 1 (DC):** $(T_A=+25^{\circ}C, \text{ unless otherwise specified})$ | <u> </u> | | | 7000 | | | | |-----------------------|------------|----------------|------|------|------|------| | Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit | | Supply Voltage | Vdd | | 1.5 | 2.85 | 3.3 | ٧ | | Control Voltage (ON) | Vctl (ON) | | 1.5 | 1.8 | 3.3 | V | | Control Voltage (OFF) | Vctl (OFF) | | 0 | 0 | 0.3 | ٧ | | Supply Current1 | Idd1 | Active mode; | - | 6.7 | 9.0 | mA | | | | Vdd=2.85V, | | | | | | | | Vctl=2.85V | | | | | | Supply Current2 | Idd2 | Active mode; | - | 6.7 | 9.0 | mA | | | | Vdd=1.8V, | | | | | | | | Vctl=1.8V | | | | | | Supply Current3 | Idd3 | Stand-by mode; | - | - | 3 | uA | | | | Vdd=2.85V, | | | | | | | | Vctl=0V | | | | | | Supply Current4 | Idd4 | Stand-by mode; | - | - | 3 | uA | | | | Vdd=1.8V, | | | | | | | | Vctl=0V | | | | | | Control Current | Ictl | Vctl=2.85V | - | 1 | 5 | uA | | | | | | | | | CDS-0061-02 Page 2 of 9 ## **GNSS LOW NOISE AMPLIFIER** ## **Electrical Characteristics 2 (RF):** $(T_A=+25^{\circ}C, Vdd=2.85V, Vctl=2.85V, RF=1575MHz, Zo=50^{\circ}\Omega)$ with application circuit) | Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit | |-----------------------------|----------------------|------------------------------------|------|------|------|-------| | Power Gain | Gain | | | 17.0 | | dB | | Noise Figure | NF | Exclude PCB and connector losses | | 0.6 | | dB | | Input Return Loss | RL _{in} | | | 21 | | dB | | Output Return Loss | RL_out | | | 14 | | dB | | 1dB Gain Compression | P _{in(1dB)} | | | -9 | | dBm | | Input Power | | | | | | ubiii | | Input 3rd Order | IIP3 | f1=f _{RF} , f2=f1+/-1MHz; | | +4 | | dBm | | Intercept Point | | Pin=-30dBm | | *+4 | | ubili | | Out of Band Input 3rd Order | IIP3_OB | f1 = 1712.7 MHz; Pin = -20 dBm | | TBD | | dBm | | Intercept Point | | f2 = 1851 MHz; Pin = -20 dBm | | עמו | | ubiii | ## **Electrical Characteristics 3 (RF):** $(T_A=+25^{\circ}C, Vdd=1.8V, Vctl=1.8V, RF=1575MHz, Zo=50\Omega)$ with application circuit) | Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit | |---|----------------------|--|------|------|------|------| | Power Gain | Gain | | | 17.0 | | dB | | Noise Figure | NF | Exclude PCB and connector losses | | 0.6 | | dB | | Input Return Loss | RL _{in} | | | 21 | | dB | | Output Return Loss | RL _{out} | | | 14 | | dB | | 1dB Gain Compression Input Power | P _{in(1dB)} | | | -11 | | dBm | | Input 3rd Order Intercept Point | IIP3 | f1=f _{RF} , f2=f1+/-1MHz;
Pin=-30dBm | | +4 | | dBm | | Out of Band Input 3rd Order Intercept Point | IIP3_OB | f1 = 1712.7 MHz; Pin = -20 dBm
f2 = 1851 MHz; Pin = -20 dBm | | TBD | | dBm | CDS-0061-02 Page 3 of 9 ## **GNSS LOW NOISE AMPLIFIER** # **Application Circuit:** #### **Parts list** CDS-0061-02 | Name | Value | Manufacturer | |------|---------|----------------------| | C1 | 100 pF | Murata GRM15 Series | | C2 | 1000 pF | Murata GRM15 Series | | L1 | 8.2 nH | Murata LQW15A Series | # Package Dimensions: Unit [mm] ## **GNSS LOW NOISE AMPLIFIER** ## **PCB Layout Footprint:** 6-PIN LEAD-LESS MINIMOLD (Unit: mm) The PCB Layout Footprint in this document is for reference only. #### **GNSS LOW NOISE AMPLIFIER** ## Application Note for GNSS L5 (1176.5MHz) Band Application This application note presents the CKRF3003MM66 performance at GNSS L5 Band. The performance of CKRF3003MM66 for GNSS L5 band application is shown in the following tables. ## **Electrical Characteristics (DC):** (T_A=+25℃, unless otherwise specified) | | • | <u>, </u> | | 4000100 | |-----------------------|------------|--|----------|---------| | Parameter | Symbol | Condition | Value | Unit | | Supply Voltage | Vdd | | 1.8/2.85 | > | | Control Voltage (ON) | Vctl (ON) | | 1.8/2.85 | > | | Control Voltage (OFF) | Vctl (OFF) | | 0 | > | | Supply Current1 | Idd1 | Active mode; | 6.7 | mA | | | | Vdd=2.85V, | | | | | | Vctl=2.85V | | | | Supply Current2 | Idd2 | Active mode; | 6.7 | mA | | | | Vdd=1.8V, | | | | | | Vctl=1.8V | W | | | Control Current | Ictl | Vctl=2.85V | 1 | uA | # **Electrical Characteristics (RF):** $(T_A=+25^{\circ}C, Vdd=2.85V, Vctl=2.85V, RF=1176.5MHz, Zo=50^{\circ}\Omega$ with application circuit) | Parameter | Symbol | Condition | Value | Unit | |----------------------------------|----------------------|--|-------|------| | Power Gain | Gain | | 17.0 | dB | | Noise Figure | NF | Exclude PCB and connector losses | 0.7 | dB | | Input Return Loss | RL _{in} | | 21 | dB | | Output Return Loss | RL_{out} | | 14 | dB | | 1dB Gain Compression Input Power | P _{in(1dB)} | | -9 | dBm | | Input 3rd Order Intercept Point | IIP3 | f1=f _{RF} , f2=f1+/-1MHz;
Pin=-30dBm | TBD | dBm | CDS-0061-02 Page 6 of 9 ## **GNSS LOW NOISE AMPLIFIER** ## **Electrical Characteristics (RF):** $(T_A=+25^{\circ}C, Vdd=1.8V, Vctl=1.8V, RF=1176.5MHz, Zo=50^{\circ}\Omega)$ with application circuit) | , , | · · · · · · · · · · · · · · · · · · · | , | | | |----------------------|---------------------------------------|---|------|-------| | Parameter | Symbol | Condition | TYP. | Unit | | Power Gain | Gain | | 17.0 | dB | | Noise Figure | NF | Exclude PCB and connector | 0.7 | dB | | | | losses | | | | Input Return Loss | RL _{in} | | 21 | dB | | Output Return Loss | RL_{out} | | 14 | dB | | 1dB Gain Compression | P _{in(1dB)} | | -11 | dBm | | Input Power | | | -11 | ubili | | Input 3rd Order | IIP3 | f1=f _{RF} , f2=f1+/-1MHz; | TBD | dBm | | Intercept Point | | Pin=-30dBm | טטו | uDIII | # **Application Circuit:** ## **Parts list** | Name | Value | Manufacturer | |------|---------|----------------------| | C1 | 100 pF | Murata GRM15 Series | | C2 | 1000 pF | Murata GRM15 Series | | L1 | 15 nH | Murata LQW15A Series | | L2 | 3.9 nH | Murata LQW15A Series | | C3 | 1.8 pF | Murata GRM15 Series | CDS-0061-02 Page 7 of 9 #### **GNSS LOW NOISE AMPLIFIER** #### [CAUTION] - All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. - You should not alter, modify, copy, or otherwise misappropriate any CDK product, whether in whole or in part. - CDK does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of CDK products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of CDK or others. - Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. CDK assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - CDK has used reasonable care in preparing the information included in this document, but CDK does not warrant that such information is error free. CDK assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - Although CDK endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a CDK product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final - Please use CDK products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. CDK assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of CDK. - Please contact a CDK if you have any questions regarding the information contained in this document or CDK products, or if you have any other inquiries. CDS-0061-02 Page 8 of 9 products or system manufactured by you. #### **GNSS LOW NOISE AMPLIFIER** [Caution in the gallium arsenide (GaAs) product handling] This product uses gallium arsenide (GaAs) of the toxic substance appointed in laws and ordinances. GaAs vapor and powder are hazardous to human health if inhaled or ingested. - Do not dispose in fire or break up this product. - Do not chemically make gas or powder with this product. - When discard this product, please obey the law of your country. - Do not lick the product or in any way allow it to enter the mouth. #### [CAUTION] Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times. CHUO DENSHI KOGYO CO., LTD 3400 Kooyama, Matsubase, Uki-City, Kumamoto 869-0512, Japan Tel : +81-964-32-2730 Fax : +81-964-32-3549 URL: http://www.en.cdk.co.jp/ Contact info for inquiries Electronic Devices Division Sales and Planning Department Tel : +81-964-32-2750 E-mail : info@cdk.co.jp FAX : +81-964-32-3549 CDS-0061-02 Page 9 of 9